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e Background the problem of interest

e Prior art on knowledge-aided target detection

e Proposed approach
— Subspace clutter model and sparse representation
— Bayesian framework

— New hierarchical model for knowledge learning and
exploitation

— Bayesian inference
— Numerical results
e Summary
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g e Airborne Radar Scenario

e Clutter Power Variations

e Clutter Discretes

e Internal Clutter Motion

e Limited Training Data

e Dense Target Environment

e Aircraft Crabbing

e Antenna Mutual Coupling — S / .
e N R Multiple Targets
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 An abstraction of the radar detection problem

Hoi y=d
Hi . y=as+d
where
N x 1 test signal

unknown target amplitude
N x 1 target steering vector
N x 1 disturbance signal (clutter, noise, jamming, etc.)

Q. wn L

e Above problem includes several important cases in radar detection
— Beamforming: N = # of antennas
— Doppler filtering: N = # of temporal pulses

— Space-time adaptive processing (STAP): N = # of antennas x # of
pulses

e The model can also be extended for MIMO radar signal detection
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e Reduced-rank detectors still need considerable training data

e Parametric detectors, albeit requiring significantly less training data,
may suffer from model mismatch

e Knowledge-aided (KA) detectors: Jointly exploit limited training/test
data along with prior knowledge for detection (Guerci 2010)

— Sources of prior knowledge: historical surveillance data, digital maps,
physics/geometry based models of radar scene

— Prior knowledge is often abstracted as a prior covariance matrix R, of
the disturbance/clutter signal d

— Key issue is to combine R, with the data-dependent sample
covariance matrix
1 §: =
R=— ) vi&yi
K =1
e Two approaches: deterministic vs. Bayesian combining

J. R. Guerci, Cognitive Radar: The Knowledge-Aided Fully Adaptive Approach, Artech House, 2010
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e |n most existing KA approaches, prior knowledge takes the abstract
form of covariance matrix. We are interested in exploiting
knowledge in more natural format, such as

— Spatial locations of dominant clutter scatterers (major natural
and man-made objects in radar scene)

— Angle-Doppler trace of clutter spectrum, which can be
determined from mobility parameters of sensor platform
(aircraft)

e Such info also represents knowledge at finer scales compared with
the full-rank covariance matrix

e |n addition, we hope to address the case when the prior knowledge
is incomplete via Bayesian learning techniques

— This takes into account clutter scatterers at locations that a priori
unknown and helps improving the detection performance



A

5 STEVENS
g === Key ldeas of Proposed Approach

3

]

N '.
|

iR S

» 8

\\k,:% Sll:f_ﬁﬁf

e Subspace model for disturbance signal

— Location related knowledge naturally has a subspace structure

— Radar clutter often has a low-rank subspace structure (Ward 1994)
e Sparse representation
— Jamming/spatial interference usually arrives from a few angles

— Clutter Doppler frequencies in ground based radar are close to
zero with a small spread

— In airborne STAP systems, clutter exhibits a clutter ridge on the
angle-Doppler domain

e New hierarchical models for knowledge exploitation

e Above components are integrated in a Bayesian learning framework
for radar detection

J. Ward, “Space-time adaptive processing for airborne radar,” Technical Report 1015, Lincoln Laboratory,
MIT, Dec 1994
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Recall the subspace model for the disturbance (clutter, jamming,

noise)
y =HpB+n, HecCY*M(L < N), n~N(0,c°I)

— Both subspace basis matrix H and coefficient vector 3 are
unknown

— Simultaneous estimation of both H and 3 is a nonlinear problem

e The problem can be linearized by using an over-determined

dictionary matrix A and a sparse constraint:
y=Ax+n

A : N x M dictionary matrix (N < M)
x : M x 1 sparse coefficient

e A number of approaches (greedy methods, convex optimization, log-

sum minimization, etc.) can be used to solve the above sparse
recovery problem. We will employ a Bayesian framework to facilitate
learning and knowledge exploitation
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A

A popular Bayesian approach to sparse recovery is based on the Gaussian-

inverse Gamma hierarchical prior. Sparse vector x has a Gaussian prior:

M
p(xla) = [[ p(zmlam), p(emlam) = N (zm|0, aml)
m=1

Inverse variance parameter o has a Gamma distribution:

M M
p(a) = [[ Gamma(am|a,b) = [[ (a) 1%l tebom
m=1 m=1
a and b are hyperparamters set to very small values, e.g., 10, to provide
broad non-informative hyperprior for o

A broad hyperprior allows the posterior mean of o, to become
unbounded, driving x, to O and leads to a sparse estimate of x (Tipping 2001)

Above Bayesian formulation does not employ any prior knowledge on the
support of x (equivalently, the subspace basis H)

M.E. Tipping, “Sparse Bayesian learning and the relevance vector machine,” The Journal of Machine
Learning Research, pp. 211-244, 2001
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e |f the hyperparamter b takes a relatively large value, the inverse Gamma
hyperprior no longer encourages large values of ... Therefore, we should
use different b, for different o, depending on prior knowledge

e Suppose we have partial knowledge of the support of the sparse vector x
PC{m|tm #0,m=1,2,...}
which denotes a subset containing indices of some non-zero x,,
e We propose the following hyperprior and hyperparameters

M
large value, m € P
p(a) = [ Gamma(aml|a,bm), bm =71 .° )
Mok ] small value, m € P
C
e Large b, over the known support helps to o 0
promote non-sparse solution over the -
support (and benefit from prior knowledge) e
e Small b, over the unknown support region
helps recovering missing subspace bases and a e b
= 10

maintain sparsity
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e The problem is to estimate parameter associated with the proposed
model and recover the sparse signal x from y using the posterior

p(y|0)p(0)
p(y)

e The posterior cannot be computed analytically due to the difficulty in
computing the marginal distribution p(y)

p(0ly) = : 0 = {x,«,v} for2-layer model

e We use variational Bayesian methods based on mean field
approximation to compute the posterior

K
p(0ly) ~ ] ax(6x),
k=1

exp (< Inp(y, 9)>l#k)
/exp (< Inp(y,9)>l#k>d9k

e The resulting detector is referred to as subspace knowledge (SK)
aided detector 11

q,(0)) =
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e Two cases are considered for the proposed SK detector
— Case 1: disturbance subspace is fully known (ideal scenario)

— Case 2: disturbance subspace is partially known (only 4 out of the 7
Fourier vectors) are assumed known

e We compare our SK detector with
— Clairvoyant subspace detector with full knowledge

— Conventional KA (knowledge-aided) detector that relies on the
prior knowledge for disturbance mitigation

— ASD (adaptive subspace detector) that uses training data to
estimate the disturbance subspace

— SBL (sparse Bayesian learning) based detector

e Only ASD requires training data (T > 0) while the other detector do not
(T=0)

12
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Left: probability of detection Py vs. SNR with INR =30 dB and Py = 1073.
Right: ROC curve with SNR =15 dB and INR =30 dB
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e 4 TeoRtoMOGH Summary

e This work is concerned with the fundamental problem of
detecting weak signals in strong interference

— Non-homogeneous environments
— Limited training data and prior knowledge

e Proposed approach builds on recent advances in compressed
sensing, sparse signal processing, machine learning

e Specific achievements

— New sparsity and hierarchical Bayesian models which can
handle incomplete prior knowledge

— New hypothesis testing solutions for GMTI and other similar
applications

15
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