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Airborne Radar Scenario 
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•T 

• Clutter Power Variations  
• Clutter Discretes 
• Internal Clutter Motion 
• Limited Training Data 
• Dense Target Environment 

•T 

• Aircraft Crabbing  
• Antenna Mutual Coupling 
• Bistatic Geometries 

•Target 
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The Problem 

• An abstraction of the radar detection problem 

 

 

where  

 

 

 

 

• Above problem includes several important cases in radar detection 

– Beamforming: N = # of antennas 

– Doppler filtering: N = # of temporal pulses 

– Space-time adaptive processing (STAP): N = # of antennas x # of 
pulses 

• The model can also be extended for MIMO radar signal detection 
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Knowledge-Aided Detectors 

• Reduced-rank detectors still need considerable training data 

• Parametric detectors, albeit requiring significantly less training data, 
may suffer from model mismatch 

• Knowledge-aided (KA) detectors: Jointly exploit limited training/test 
data along with prior knowledge for detection (Guerci 2010) 

– Sources of prior knowledge: historical surveillance data, digital maps, 
physics/geometry based models of radar scene 

– Prior knowledge is often abstracted as a prior covariance matrix R0 of 
the disturbance/clutter signal d 

– Key issue is to combine R0 with the data-dependent sample 
covariance matrix  

 
• Two approaches: deterministic vs. Bayesian combining 
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Motivation 

• In most existing KA approaches, prior knowledge takes the abstract 
form of covariance matrix. We are interested in exploiting 
knowledge in more natural format, such as 

– Spatial locations of dominant clutter scatterers (major natural 
and man-made objects in radar scene) 

– Angle-Doppler trace of clutter spectrum, which can be 
determined from mobility parameters of sensor platform 
(aircraft) 

• Such info also represents knowledge at finer scales compared with 
the full-rank covariance matrix 

• In addition, we hope to address the case when the prior knowledge 
is incomplete via Bayesian learning techniques 

– This takes into account clutter scatterers at locations that a priori 
unknown and helps improving the detection performance 
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   Key Ideas of Proposed Approach 

• Subspace model for disturbance signal 

– Location related knowledge naturally has a subspace structure 

– Radar clutter often has a low-rank subspace structure (Ward 1994) 

• Sparse representation  

– Jamming/spatial interference usually arrives from a few angles 

– Clutter Doppler frequencies in ground based radar are close to 
zero with a small spread 

– In airborne STAP systems, clutter exhibits a clutter ridge on the 
angle-Doppler domain 

• New hierarchical models for knowledge exploitation  

• Above components are integrated in a Bayesian learning framework 
for radar detection 
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Subspace Model and Sparse 
Representation 

• Recall the subspace model for the disturbance (clutter, jamming, 
noise) 

 

– Both subspace basis matrix H and coefficient vector  are 
unknown  

– Simultaneous estimation of both H and  is a nonlinear problem 

• The problem can be linearized by using an over-determined 
dictionary matrix A and a sparse constraint: 

 

 

 

• A number of approaches (greedy methods, convex optimization, log-
sum minimization, etc.) can be used to solve the above sparse 
recovery problem. We will employ a Bayesian framework to facilitate 
learning and knowledge exploitation 
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Bayesian Learning Framework 

• A popular Bayesian approach to sparse recovery is based on the Gaussian-
inverse Gamma hierarchical prior. Sparse vector x has a Gaussian prior: 

 

 

• Inverse variance parameter  has a Gamma distribution: 

 

 

a and b are hyperparamters set to very small values, e.g., 10-4, to provide 
broad non-informative hyperprior for  

• A broad hyperprior allows the posterior mean of m to become 
unbounded, driving xm to 0 and leads to a sparse estimate of x (Tipping 2001) 

• Above Bayesian formulation does not employ any prior knowledge on the 
support of x (equivalently, the subspace basis H) 
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2-Layer Hierarchical Model for 
Knowledge Integration 

• If the hyperparamter b takes a relatively large value, the inverse Gamma 
hyperprior no longer encourages large values of m. Therefore, we should 
use different  bm for different m, depending on prior knowledge 

• Suppose we have partial knowledge of the support of the sparse vector x 

 

which denotes a subset containing indices of some non-zero xm 

• We propose the following hyperprior and hyperparameters 
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• Large bm over the known support helps to 
promote non-sparse solution over the 
support (and benefit from prior knowledge)  

• Small bm over the unknown support region 
helps recovering missing subspace bases and 
maintain sparsity 

 

 



Bayesian Inference 

• The problem is to estimate parameter associated with the proposed 
model and recover the sparse signal x from y using the posterior  

 

 

• The posterior cannot be computed analytically due to the difficulty in 
computing the marginal distribution p(y) 

• We use variational Bayesian methods based on mean field 
approximation to compute the posterior 

 

 

 

 

 

• The resulting detector is referred to as subspace knowledge (SK) 
aided detector 
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Numerical Results 

• Two cases are considered for the proposed SK detector  

– Case 1: disturbance subspace is fully known (ideal scenario) 

– Case 2: disturbance subspace is partially known (only 4 out of the 7 
Fourier vectors) are assumed known 

• We compare our SK detector with 

– Clairvoyant subspace detector with full knowledge 

– Conventional KA (knowledge-aided) detector that relies on the 
prior knowledge for disturbance mitigation 

– ASD (adaptive subspace detector) that uses training data to 
estimate the disturbance subspace  

– SBL (sparse Bayesian learning) based detector 

• Only ASD requires training data (T > 0) while the other detector do not 
(T = 0)  
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Case I (Full Knowledge) 
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Left: probability of detection 𝑃𝑑 vs. SNR with INR = 30 dB and 𝑃𝑓 = 10−3.  

Right: ROC curve with SNR = 15 dB and INR = 30 dB 
 



Case 2 (Partial Knowledge) 
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Left: probability of detection 𝑃𝑑 vs. SNR with INR = 30 dB and 𝑃𝑓 = 10−3.  

Right: ROC curve with SNR = 15 dB and INR = 30 dB 
 



Summary 

• This work is concerned with the fundamental problem of 
detecting weak signals in strong interference  

– Non-homogeneous environments 

– Limited training data and prior knowledge 

• Proposed approach builds on recent advances in compressed 
sensing, sparse signal processing, machine learning 

• Specific achievements 

– New sparsity and hierarchical Bayesian models which can 
handle incomplete prior knowledge 

– New hypothesis testing solutions for GMTI and other similar 
applications  
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Thank you! 
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